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INTRODUCTION

In 1988 endocrinologist Gerald Reaven presented 
groundbreaking research that challenged existing 
ideas concerning the etiology of a handful of 
common clinical conditions – hypertension, obesity, 
hyperinsulinemia, elevated blood glucose and 
triglyceride levels – and pointed to their conjoined 
origins in a single overarching disturbance known 
as insulin resistance.

He noted that people with hypertension had 
elevated blood levels of insulin and, moreover, were 
relatively resistant to its actions. After a period of 
fasting such individuals had increased blood sugar 
levels which also occurs in diabetes. In addition, 
hypertensives often had elevated blood cholesterol 
and triglyceride levels. Observing that many obese 
and sedentary individuals were also resistant to 
insulin, Reaven reasoned that insulin resistance was 
the cause of all the other abnormalities.

Recognizing that hypertension, obesity, 
hyperglycemia and hyperlipidemia had earlier 
been shown individually to promote development 
of heart disease, Reaven deduced that this cluster 
of related conditions – what he designated as 
Syndrome X, later called Metabolic Syndrome 
– formed the primary basis of common chronic 
diseases like diabetes and heart disease.

'Although this concept may seem outlandish at first 
blush', he acknowledged, 'this notion is consistent 
with available clinical data' [1]. In advancing his 
unifying hypothesis and tying various known 
risk factors into a coherent framework, Reaven 
became one of the first 20th century researchers 
to step beyond the maze of cellular and molecular 
mechanisms.  

Reaven's ideas set off a firestorm of controversy 
in the research community that continues to this 
day. Opinion as to the existence of the Metabolic 
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Syndrome (MetS) remains divided [2-5]. Some argue 
it is a statistical artifact rather than a bona fide clinical 
entity. In ascribing the origins of chronic disease to 
insulin resistance – which he left undefined – he 
opened the door, albeit unintentionally, to a more 
dynamic way of understanding these conditions.  

A 2005 joint statement by the American Diabetes 
Association and the European Association for the 
Study of Diabetes concluded: . . . while there [is] no 
question that certain [cardiovascular] risk factors 
are prone to cluster . . . the Metabolic Syndrome 
[is] imprecisely defined, there is a lack of certainty 
regarding its pathogenesis, and there is considerable 
doubt regarding its value as a [cardiovascular] 
risk marker. Our analysis indicates that too much 
critically important information is missing to warrant 
its designation as a syndrome' [6].

And as researchers continued their decades-long 
Nero-esque debate over the existence of MetS its 
numbers exploded across the globe on a scale that 
defies imagination [7-10]. Among adults in the US 
the prevalence of MetS rose by over 35% between 
1998 and 2012 across every socioeconomic group 
and it now affects over 30% of the population [11]. 
Similar trends occurred globally. More worrisome, in 
testament to the long-term threat it poses, by 2020 
about 3-5% of children and adolescents globally 
were affected by MetS [12]. Such rapid spread defies 
any genetic mode of propagation.

Not a disease per se, but an upstream cluster of 
pathophysiological alterations, MetS feeds directly 
into the escalating burden of chronic disease: 
it is associated with a 2 to 5-fold increase in 
cardiovascular disease, ~5-fold increase in diabetes, 
and ~1.5-fold increase in all-cause mortality [13-
17]. It carries a heightened risk for clotting disorders 
[18-20], chronic kidney disease [21-23], dementias 
like Alzheimer's [24-26], stroke [27-29], atrial 
fibrillation [30-32], peripheral vascular disease [33-
35], and various cancers [36-45]. Its cost in terms 

of human well-being, loss of productivity, and 
medical expenditures is inestimable. It is the human 
equivalent of global climate change.  

MetS, as well as the escalating burden of chronic 
disease, is directly related to contemporary western 
lifestyles: energy-dense diets and sedentary, 
desk-bound activity patterns are its main drivers. 
All current medical treatments are palliative 
and temporizing; none prevent the progression 
of the underlying disorder. There are no magic 
bullets on the horizon. The mainstay of treatment 
involves lifestyle changes centered around dietary 
modifications, exercise, and weight loss.  

The evolving crisis is inextricably linked to 20th-
century experimental science. Insulin resistance 
was recognized within years following introduction 
of insulin into clinical practice and first reported in 
the medical literature in the 1930s [46]. As scientists 
focused on elucidating cellular and molecular 
mechanisms of diabetes it attracted little attention 
until researchers like Reaven studied it more closely. 
Despite tens of thousands of reports in the medical 
literature detailing its various aspects medical 
scientists are still unable to explain its basis with any 
degree of clarity. This points to a dramatic failure of 
20th-century experimental science and the cellular/
molecular paradigm.  
 
In this article we describe the dynamic aspects of 
MetS and show the systemic nexus of derangements 
that occur in conjunction with insulin resistance (IR). 
But IR is not the primary problem and insulin, alas, 
is but an innocent bystander. In previous works we 
document the presence of an organized energy field 
taking origin in the blood through the contraction 
and dilation cycles of the heart. In the final analysis 
IR is secondary to a defect in the generation and 
availability of blood-borne energy. This is to say that 
all aspects of MetS and all ensuing states of organ 
dysfunction are manifestations of a progressing and 
cumulative energy deficit. On this basis it only stands 
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to reason that all attempts at remediation must be 
aimed toward enhancing energy generation and 
flow in the blood.

INSULIN RESISTANCE & 
MICROVASCULAR DYSFUNCTION

Evidence emerging in the past 35 years substantiates 
Reaven's assertions. But, as 20th century science 
philosopher Karl Popper established in his influential 
work The Logic of Scientific Discovery, scientific 
hypotheses can never be proven, only substantiated 
[47]. The corollary to this is that scientific knowledge 
advances on the basis of negation of existing 
hypotheses. Given that no credible refutation has 
yet emerged, Reaven's thesis must be accepted 
as provisionally correct. We thus continue along 
the same path of inquiry using a similar mode of 
inductive reasoning. 

If Reaven's work had a single flaw it lay in his inability 
to articulate the nature of IR which, at the time, 
was an unknown entity – literally 'Syndrome X'. 
This opened the door to a host of detractors who, 
expecting a cellular or molecular account, disputed 
(but never refuted) his claim. To reinforce and build 
on Reaven's work we demonstrate a wider nest of 
dynamic disturbances surrounding IR, all of which 
involve the vascular system and known energy 
pathways, and in so doing provide a more complete 
elucidation as to its nature.  

The first and most relevant association is with the 
entity known as diastolic dysfunction. Around 
the time Reaven was formulating his hypothesis 
a radical upheaval was underway in cardiology 
regarding the nature of cardiac function. For much 
of the 20th century the heart had been conceived 
to function in the manner of a mechanical pump 
with blood propelled forward from the ventricles 
into the arteries during systolic contraction. In the 
1980s negative pressures were discovered in the 

ventricular chambers during early diastole indicating 
the presence of a suctional force which actively drew 
blood forward [48-54]. It soon became apparent 
that diastole – not systole – was the determinant 
phase of the cardiac cycle. 

Since this highly disruptive and unanticipated 
epiphany scientists have been at a loss to explain how 
the force responsible for the outward movement of 
the ventricles and antegrade movement of blood is 
generated. Their mechanical and chemical theories 
are laden with inconsistency [55-63]. In earlier 
works we show that diastolic expansion of both 
cardiac and arterial walls is secondary to generation 
of a magnetic field induced during the systolic phase 
[64]. This, in turn, explains the presence of abundant 
iron stores in the heart muscle and blood.

Within years of establishing the primacy of diastole 
it was recognized that impairment of the outward 
movement of the cardiac and arterial walls, known 
as 'diastolic dysfunction', was associated with a 
host of chronic diseases and, moreover, was often 
the first abnormality to appear [65, 66]. Diastolic 
dysfunction is now recognized as a leading predictor 
of all-cause mortality [67-70]. This is to say that 
the pandemic of chronic disease now spreading 
unchecked across modern societies, for which 
medical science has neither a satisfying explanation 
nor effective treatment, is primarily energetic in 
origin.

It is hardly surprising therefore to discover that every 
single component of MetS – hypertension, obesity, 
hyperinsulinemia, hyperglycemia, hyperlipidemia, 
as well as IR – has been linked to diastolic dysfunction 
[71-87]. But an association says nothing about 
causality nor does it in anyway explain the nature of 
IR. For this we must dig still deeper.

In the 1970s and 80s cardiologists observed 
increasing numbers of people who presented with 
typical angina-like chest pain and who, on exercise 
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stress-testing, developed ECG abnormalities 
consistent with myocardial ischemia but had normal 
coronary arteries by angiography [88-90]. Called 
Cardiac Syndrome X, symptoms are secondary to 
diastolic dysfunction at the microvascular level. 
Overall, about 20-30% of individuals with angina 
have no obvious coronary plaques. Microvascular 
dysfunction is present in most if not all of these 
people [91-93]. And herein lies the connection 
between IR and MetS.

In the 1990s a spate of reports linked Cardiac 
Syndrome X not only to IR but to other aspects of 
MetS including hypertension, hyperinsulinemia, 
hyperglycemia and hyperlipidemia [94-111]. In such 
cases angina and IR often occurred in the absence 
of obesity but researchers nonetheless observed 
striking overlaps between Reaven's Syndrome X and 
Cardiac Syndrome X and increasingly began to view 
them as variations on a similar theme [112-117]. It 
was on this basis that the term Metabolic Syndrome 
gained currency so as to distinguish it from the 
cardiac entity. 

Microvascular dysfunction is not limited to the heart 
but, rather, is a body-wide phenomenon. Multiple 
organs, including brain, kidneys, liver, muscle and 
more are involved [118-121]. Many with coronary 
microvascular dysfunction have abnormal brain 
perfusion and are at higher risk for neurologic 
problems like stroke and dementia. Consistent with 
its systemic nature, coronary flow abnormalities 
can be estimated by evaluating arterial pulsations 
in other vascular territories like the retinal arteries 
[122, 123]. Microvascular dysfunction forms the 
common etiological basis of diabetes, hypertension, 
and obesity [124-133].  

The common denominator tying microvascular 
dysfunction into all components of MetS is 
inflammation. Impaired microvascular function 
results in diminished energy generation and 
mitochondrial dysfunction in endothelial cells 

triggering inflammation [134-136]. Scientists 
have spent the past half-century trying to explain 
inflammation on a cellular and molecular basis with 
little success. Inflammation is prima facie evidence 
of a blood-borne energy deficiency: oxidative stress 
in endothelial cells induces pro-inflammatory 
cytokine release triggering an immune response 
and the so-called cytokine storm. Such events 
are not restricted to the endothelium. Whether 
involving heart muscle cells, renal tubular cells, or 
brain neurons, microvascular dysfunction sets into 
motion a spiral of chronic low-grade inflammation. 

It is thus not coincidental that intimate associations 
exist between inflammation, obesity, hypertension, 
IR, hyperinsulinemia, hyperglycemia, and 
hyperlipidemia [137-148]. Each is secondary 
to mitochondrial dysfunction and defective 
intracellular energy generation [149-167]. And 
herein lies the physiologic basis of IR.

Under normal conditions, when insulin is secreted 
into the blood by pancreatic β-cells it induces cellular 
uptake of glucose and, as a result, blood sugar levels 
decrease. In hypertensive and/or obese individuals 
with microvascular dysfunction, inflammation, and 
mitochondrial abnormalities, glucose metabolism 
is blunted and cellular uptake of glucose impaired 
[168-178]. As Reaven pointed out, even among 
subjects with normal glucose tolerance, sensitivity 
to the actions of insulin may vary by up to threefold 
and the reason why blood sugar levels remain 
normal in these people, and even in cases of severe 
insulin resistance, lies in the ability of β-cells to 
increase insulin secretion [179-186]. This forms 
the basis of hyperinsulinemia. But as the adaptive 
capacity of the pancreas diminishes blood glucose 
levels gradually rise and at some point an individual 
develops non-insulin dependent diabetes. 

A similar though somewhat different mechanism 
mediates the relationship between IR and 
hyperlipidemia. When insulin is secreted into the 
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blood it acts to inhibit the breakdown of fat and 
the release of fatty acids by adipose tissue into the 
blood, i.e., lipolysis. In individuals with IR, the ability 
of insulin to suppress lipolysis diminishes and thus 
fatty acid levels remain elevated or increase [187-
191]. To compound the problem, as hyperlipidemia 
persists it antagonizes the actions of insulin and 
further worsens IR [192-195]. In any event IR 
is the culprit behind both hyperglycemia and 
hyperlipidemia and as it progresses so too do both 
of these conditions. Similar factors play into the 
development and perpetuation of hypertension.
 
Microvascular dysfunction and reduced energy 
flow into the kidneys induces oxidative stress and 
inflammation which leads to activation of the renin-
angiotensin system by the adrenal glands and 
hypertension. The response is aimed at enhancing 
energy generation by the heart and its availability 
to the kidneys. When this response is insufficient 
then arterial blood pressure remains elevated and 
chronic hypertension ensues [196-207].  

Hypertension initiates a self-amplifying, 
bidirectional spiral of deterioration: It worsens 
microvascular dysfunction which augments 
endothelial inflammation and reduces energy 
flow into the kidneys even further. Hypertension-
induced microvascular dysfunction, in turn, leads 
to worsening of IR with resultant exacerbation of 
hyperglycemia and hyperlipidemia. All pathways 
lead back to deficient energy generation in the zero-
sum dynamic of MetS. 

SYSTEMIC ENERGY DEFICIT

Originally Reaven argued for an association between 
the cluster of metabolic abnormalities and coronary 
artery disease but later expanded the pathologic 
nexus to include clotting disturbances, kidney 
disease and various cancers. And the list just kept 
growing. In recent decades at least three widely 
prevalent entities, nonalcoholic fatty liver disease 

(NAFLD), polycystic ovarian syndrome (PCOS) and 
depression have been connected to MetS each of 
which implicates an ever-widening spiral of systemic 
disturbances involving the immune system, gut, 
endocrine axis, and circadian system.

Over a course of decades, the prevalence of NAFLD 
exploded in parallel with MetS: by 2020 it affected 
~30% of the global population with rates in certain 
regions like the Middle East over 40% [208-211]. 
NAFLD is now the most common chronic liver 
condition globally and a leading indication for liver 
transplantation. NAFLD composes a spectrum 
ranging from accumulation of fat in hepatocytes to 
progressive fibrosis, cirrhosis and liver failure [212-
217]. Underlying dynamic causes are microvascular 
dysfunction [218-230], IR [231-239], mitochondrial 
dysfunction [240-247] and inflammation [248-256]. 

In NAFLD deterioration of liver function unfolds 
sequentially permitting one to observe the relative 
contributions of the different components. The 
earliest sign, intracellular fat accumulation, primarily 
reflects diastolic dysfunction, decreased energy 
generation and IR. It is generally accepted that 
hyperinsulinemia induces fat accumulation in liver 
cells [257-260]. A significant portion of people, up 
to 20-30%, develop NAFLD in the absence of obesity 
[261-264]. While lean individuals tend to have 
milder expression of the syndrome compared to 
obese they are still at heightened risk for progressive 
deterioration of liver function and cardiovascular 
events [265-268] (Figure 1).
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Figure 1. NAFLD: Far left image (A) shows normal density liver (red arrow). Observe that normal liver & 
spleen are relatively isodense and that as we move from left to right (B C D) and the fat content of 

the liver increases, it becomes progressively darker compared to the spleen.

As this state persists individuals, both lean and 
obese, progress into a second phase, nonalcoholic 
steatohepatitis (NASH), the result of a widening 
arc of inflammation, release of proinflammatory 
cytokines, immune cell activation and, ultimately, 
cell death; such events, in turn, trigger deposition 
of fibrous tissue in the liver and transformation 
into cirrhosis [269-271]. About 25% of people 
with NAFLD progress to NASH and 7-8% develop 
advanced fibrosis [272-275]. Like NAFLD, NASH is 
usually clinically silent; unlike NAFLD which can be 
detected by ultrasound or CT, NASH often requires 
biopsy for diagnosis.

Increased fat synthesis by hepatocytes compounds 
the energy deficit and further disrupts cell 
metabolism. With prolonged mitochondrial 
dysfunction and oxidative stress, cellular 
processes go awry: impaired lysosomal function 
produces deterioration of autophagy and protein 
homeostasis; accumulation of reactive oxygen 
species and acidification of the cytoplasm, in turn, 
induce structural damage and formation of toxic 
lipid by-products [276-279]. Ultimately cells enter 
the death spiral leading to mass programmed cell 
death, i.e. apoptosis. The priming event seems 
to involve NLRP3 inflammasome formation, i.e., 
coalescence of cytoplasmic structures into larger 
amorphous complexes, likely related to protein 

misfolding, which induce pro-inflammatory 
cytokines and immune cell activation triggering the 
cytokine storm [280-283]. 

Dysfunctional immune signaling induces apoptosis 
of necrotic hepatocytes with spillage of toxic lipid 
contents into the extracellular fluid space causing 
periportal inflammation, phlebitis and cholangitis 
[284-295]. Chronic inflammation and cell death 
induce collagen deposition leading to progressive 
fibrosis [296-306]. Obliteration of small and 
medium-sized venules increases portal venous 
pressure with restriction of flow into the liver [307-
312]. Events leading from NASH to cirrhosis are 
now set in motion (Figure 2). These very conditions, 
with or without cirrhosis, increase the risk for 
hepatocellular carcinoma [313-316].  
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Figure 2. Image A depicts normal liver.  As hepatocellular inflammation persists the liver 
becomes progressively more fibrotic, nodular and contracted ((B C D).  With advanced 

cirrhosis portal venous hypertension leads to accumulation of intra-abdominal ascites 
(image D) surrounding the liver & spleen.

Deterioration of liver function is further amplified 
by processes in the bowel. Gut dysbiosis aggravates 
liver inflammation. Reduced bacterial diversity 
with proliferation of pathogenic species trigger 
immune dysfunction resulting in chronic low grade 
inflammation of the gut lining [317-326]. This, in 
turn, leads to increased permeability, aka 'leaky 
gut' syndrome, with upward passage of bacteria 
and endotoxins into the liver [327-330]. Elevated 
portal venous pressure and stasis enhance the pro-
inflammatory milieu throughout the entire vascular 
compartment [331-333].  

Recent reports document a similar spiral of 
deterioration involving the pancreas. In response 
to metabolic demands incurred by IR the pancreas 
undergoes an initial phase of hypertrophy and 
cellular hyperplasia but, due to the energy deficit, 
atrophies and becomes replaced with fat (Figure 
3). Called nonalcoholic fatty pancreatic disease, it is 
associated with deterioration of pancreatic function, 
worsening of IR, increased tendency for pancreatitis, 
and heightened risk for pancreatic carcinoma [334-
341].   

Figure 3. Far left image (A) depicts normal density pancreas (red arrow). With fat 
accumulation (images B & C) pancreas becomes progressively darker eventually 

blending in with the surrounding visceral fat.
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While researchers continued to debate the 
existence of MetS another ominous statistical 
association emerged that would take them down 
yet another rabbit hole. PCOS was described by 
Stein and Leventhal in the 1930s but there was little 
appreciation of its systemic nature until it had become 
too common to ignore [342]. Despite publication of 
diagnostic criteria in recent decades researchers 
continue to quibble over definitional issues [343-
349]. If NAFLD is the hepatic manifestation MetS 
then PCOS is its ovarian equivalent.

PCOS, affecting 7-21% of women of reproductive 
age [350-353], is characterized by irregular often 
anovulatory menstrual cycles and infertility rates as 
high as 70-80% [354, 355]. 'Polycystic' refers to the 

defining pathophysiologic feature, accumulation of 
small cysts in the periphery of the ovaries, due to 
impaired maturation of ovarian follicles, resulting in 
the characteristic 'string of pearls' appearance on 
ultrasound scans (Figures 4 & 5). Widely regarded 
as an endocrine disorder, and presenting with 
elevated blood testosterone levels, affected women 
may also develop acne, hirsutism and male-pattern 
hair loss [356-358]. Despite exhaustive lab analysis 
and genome-wide association studies researchers 
remain uncertain as to its origins. It is generally 
believed to be secondary to genetic, environmental 
and/or behavioral influences which amounts to 
saying anything and everything [359-361].

Figure 4. Ultrasound images of polycystic ovaries.  Cysts appear as rounded black 
structures in the peripheral zone of the ovaries.
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Figure 5. Image depicts interruption of normal follicular maturation in polycystic ovaries which leads to 
failure of ovulation and infertility.

Approximately 40-50% of women with PCOS have 
MetS [362-366]. About 40-70% have NAFLD [367-
378]; 50-80% are overweight or obese [379-383]. 
Similarities don't end there. PCOS is associated with 
endothelial dysfunction [384-394], IR [395-400], 
mitochondrial dysfunction [401-406], inflammation 
[407-412], elevated proinflammatory cytokines 
[413-417] and pathogenic immune system activation 
[418-421]. Women are often hyperlipidemic [422-
425] and at heightened risk for type II diabetes and 
heart disease [426-430]. As with NAFLD a significant 
number of affected women are lean [431-433]. 
Menstrual irregularities and infertility are energetic 
in origin.

Restricted blood energy generation along with 
cellular mitochondrial dysfunction adversely impact 
the ovaries. Theca and granulosa cells in ovarian 
follicles produce estrogen and progesterone which 
are necessary for proper follicular maturation [434-
441]. During the synthesis process testosterone is 
converted to estrogen by the enzyme aromatase, part 
of the cytochrome p450 system, which is an energy-
dependent step. The failure to convert testosterone 
to estrogen leads to its pathologic accumulation 
[442-444]. Elevated blood testosterone levels, as 
indicated, are a defining biochemical feature in 
women with PCOS [445-449].   
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The most dire consequences of PCOS lie in the future. 
Many young women with PCOS appear to have been 
'programmed' in utero by the hyperandrogenic 
milieu of their mothers [450-457]. Clinical evidence 
suggests that developmental exposure to high 
concentrations of testosterone 'androgenize' 
female offspring leading to subsequent expression 
of not just PCOS but other components of MetS 
[458-462]. If this proves true then the effects of 
industrialization and western lifestyle will be likely 
play out over multiple generations. In rapidly 
westernizing countries like China the prevalence of 
PCOS has increased nearly 65% in the last decade 
alone [463].

If there are lingering doubts as to the systemic nature 
of MetS or its energetic basis, its link with depression 
should quell skeptics. Traditionally regarded as a 
purely affective disorder, characterized by negative 
mood states like sadness, irritability, apathy, 
hopelessness or loss of self-esteem, individuals 
experience a range of functional disturbances such 
as low energy, fatigue, inability to concentrate, 
sleep disturbances, or changes in appetite. In recent 
decades depression has been tied into a wide range 
of pathologic bodily states as well [464].  

According to WHO data, about 5% of the global 
population is affected by depression [465]. In the 
US over 36% of women and 20% of men have been 
diagnosed with depression at some point in their 
lives which, according to a recent Gallup Poll, is at 
an all-time high [466]. While depression affects all 
age groups, young and middle-aged adults have 
the highest rates; women are affected by about a 
2:1 margin; depression is more common among 
minority groups [467]. About 30-40% of depressed 
people have moderate to severe symptoms. Its 
connection with MetS is grim.
  
MetS and depression have a bidirectional 
relationship: people with MetS are more likely to 
become depressed; individuals with depression 

are more prone to develop MetS regardless of age, 
gender, socioeconomic status, or lifestyle [468-
474]. Studies consistently link depression with waist 
circumference, abdominal obesity, IR, dyslipidemia, 
hyperglycemia and hypertension [475-489]. As 
the number of MetS components increases so too 
does the severity of depressive symptoms. By the 
same token depression is more common among 
individuals with NAFLD and PCOS whether lean 
or obese [490-500]. Depression predisposes to 
diabetes [501-506]. People with major depression 
have a 4-fold higher risk for early death, mainly from 
cardiovascular causes [507-512].      
  
As with the other dysmetabolic states, impaired 
energy generation and systemic inflammation are 
primary aspects of depression [513-516]. Depression 
and microvascular dysfunction go hand-in-hand 
[517-526]. Abnormal arterial waveforms are present 
in the retinal arteries of depressed individuals [527]. 
Many researchers regard mitochondrial dysfunction 
as a hallmark of depression [528-536]. Underscoring 
its systemic nature, mitochondrial dysfunction 
has been found in skin cells of depressed persons 
[537]. Depression is associated with elevated 
proinflammatory cytokines [538-541] and NLRP3 
inflammasome formation [542-545]. Cytokine levels 
have been reported to normalize following recovery 
from depression [546]. One might thus regard the 
negative affective state of depression as a direct 
correlate of the systemic energy deficit. So how do 
scientists explain the origins of MetS?

Given that MetS has been associated with a rash of 
hormonal abnormalities some claim it is an endocrine 
disorder [547, 548]. Disturbances fall into three 
broad categories: Activation of catabolic pathways 
through the hypothalamic-pituitary-adrenal (HPA) 
axis with heightened sympathetic nervous activity 
and cortisol secretion [549-563]; resistance to and/
or deficient production of anabolic hormones like 
insulin, growth hormone and estrogen [564-579]; 
and, as we will see shortly, resistance to the actions 
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of thyroid hormone and its impaired ability to 
stimulate thermogenesis [580-584].

The hormonal causal thesis is supported by striking 
similarity between MetS and two classic endocrine 
disorders: Cushing's syndrome and MetS share 
multiple clinical features, i.e., abdominal obesity, 
hypertension, IR, predisposition to heart disease 
and diabetes; the overlap is so complete as to 
suggest they are one and the same disorder [585-
596]. Similarly, hypothyroidism, characterized 
by weight gain, hypertension, impaired glucose 
metabolism, hyperlipidemia, NAFLD, and increased 
predisposition to heart disease and diabetes, seems 
to be little more than an alternate pathway into the 
same pathologic nexus [597-612].   

Still others regard MetS as a result of disordered 
regulation of the 'biological clock' [613-616]. 
The circadian clock, said to be located in the 
hypothalamus, has long been recognized to play an 
important role in a host of physiologic processes like 
the sleep-wake cycle, body temperature regulation, 
energy expenditure, organ function, hormonal 
release, gene expression and more [617-626]. 
Circadian rhythmic disturbances are well recognized 
in chronic conditions like diabetes and heart disease 
[627-631] as well as MetS [632-637]. 

The biological clock hypothesis, proponents 
argue, also explains how various components of 
the modern lifestyle such as excessive artificial 
light exposure, controlled ambient temperature, 
shiftwork, frequent travel across multiple time 
zones – all of which have been shown to play into 
the genesis of chronic disease – assert their effects. 
Based on such considerations, some claim that 
disruption of the circadian system plays a major 
role in the genesis of MetS and, moreover, propose 
that it be renamed the 'Circadian Syndrome' [638, 
639]. They argue that proper timing of the sleep-
wake cycle and work schedules, adequate exercise, 
healthy food consumption, and alleviation of social 

stress must necessarily form the cornerstone of any 
and all attempts to halt the global epidemic of MetS. 
While this is undoubtedly true, it does not in any 
way imply that the circadian system plays a causal 
role in the development of MetS.

Neither the hormonal nor circadian hypotheses alone 
or in combination explain either hypertension, IR, 
hyperinsulinemia, hyperglycemia or hyperlipidemia, 
and certainly not mitochondrial dysfunction or 
inflammation. The only satisfying explanation for all 
the abnormalities associated with MetS, including 
NAFLD, PCOS and depression, is microvascular 
dysfunction and impaired energy generation by the 
cardiovascular system. The hormonal and circadian 
disturbances are simply further testimony for the 
all-encompassing systemic nexus of dysfunction.

The notion of a blood-borne energy field is neither 
new nor original. It was first articulated around 200 
AD by Roman physician Galen, the most important 
medical synthesizer of the ancient world [640]. His 
humoral system of medicine – the central tenet being 
that the blood is the source of all bodily functions 
– was accepted by physicians for over 1500 years 
until it was arbitrarily discarded by early scientists 
without refutation. With recognition of the primary 
role of the blood-borne energy field in the genesis of 
MetS, medical thought now comes full circle. By the 
same token, it points to the abject failure of three 
centuries of speculative medical theorizing and the 
facilitative role played by 20th century science in the 
escalating global epidemic of chronic disease.

THE FAT PROBLEM

We have established the energetic basis of MetS 
as well as associated pathologic states like NAFLD, 
PCOS and depression, each of which has as its 
basis the core triad of microvascular dysfunction, 
impaired mitochondrial energy metabolism and 
inflammation. These three primary disturbances are 
present in any and all of the various permutations of 
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MetS regardless of which clinical presentation may 
develop or dominate. In general, the more limited 
the number of components present in any given 
individual the more favorable the outcome; as that 
number increases the situation tends to deteriorate 
as one would expect.  

The same pattern is seen in the overweight/
obesity spectrum. For simplicity we use the term 
obesity bearing in mind that its relation to MetS is 
variable and poorly defined. Based on body mass 
index (BMI), with 'normal' being 18.5-22.9 kg/m2, 
'overweight' 23-24.9 kg/m2, 'pre-obese' 25-29.9 kg/
m2, and 'obese' greater than 30 kg/m2, one study 
found a progressive increase in the prevalence of 
MetS: 29.6%, 38.9%, 56.9% and 62.4% [641]. This 
is to say that up to 30% of so-called 'normal' weight 
individuals may have MetS while, conversely, 38% 
of obese individuals would appear to be unaffected. 
Obesity thus represents one aspect of MetS but 
not a defining feature. Once again this points to the 
primacy of the energy deficit.

Along this vein researchers identify a subset in the 
obesity spectrum they call 'metabolically healthy' 
obesity in which individuals remain sensitive to 
the actions of insulin and have relatively normal 
inflammatory markers [642-645]. Thus, we can 
speak only in general terms as to what happens when 
any particular individual happens to gain excessive 
weight and enter the spectrum. We thus focus upon 
those aspects of weight gain and obesity associated 
with MetS. While some of these are unique to fat 
tissue, the underlying metabolic disturbances are 
identical to those seen in all other organs.

There has been a seismic shift in how fat is 
conceived. Once regarded as a passive storage site 
for excess energy intake, it is now understood to 
be highly dynamic and adaptable, ranging from as 
little as 2% to over 70% of body weight, involved not 
just with energy storage but active heat production. 
Its functions are intimately entwined with those of 

the vascular, endocrine, and immune systems [646, 
647].  

Two primary forms of fat are recognized: white 
adipose tissue (WAT), serving the classic energy 
storage role; and brown adipose tissue (BAT), which 
functions to enhance energy dynamics through the 
release of heat, aka thermogenesis. Energy, stored in 
WAT as fatty acids, is released 'on demand' into the 
vascular compartment mainly under the influence 
of endocrine mediators. BAT, on the other hand, 
highly vascularized and laden with mitochondria, 
releases heat pulses promoting vasodilation and 
various cell functions primarily under the aegis of 
the sympathetic nervous system.

WAT, distributed throughout the body, localizes 
primarily in the tissues beneath the skin, i.e., 
subcutaneous fat, or in the abdomen surrounding 
internal organs, i.e., visceral fat [648, 649]. In 
lean, healthy people fat is confined mainly to 
these depots. In obesity, on the other hand, the 
fat mass expands and accumulates in regions 
such as mesentery, omentum, retroperitoneum, 
and pericardium  (Figure 6). Along with fat 
mass expansion one observes progression of 
microvascular dysfunction and IR which [650-657], 
in turn, promote hyperlipidemia by release of fatty 
acids into the blood [658-662]. Increased visceral fat 
in particular predisposes to development of MetS 
[663-669]. NAFLD obviously represents part of the 
spectrum of pathologic fat accumulation [670].
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Figure 6. Axial CT images through mid-abdomen displaying variations in extraabdominal-subcutaneous 
and intraabdominal-visceral fat distribution. Image A = lean state; Image B = visceral fat dominance; 

Image C = subcutaneous accumulation; Image D = accumulation in both compartments.

Fat mass expands in two ways: In younger people 
it occurs mainly by formation of new fat cells, aka 
hyperplastic obesity, while in adults, rather than 
undergoing mitosis, adipose cells enlarge, aka 
hypertrophic obesity. This second mechanism is 
particularly disposed toward development of MetS 
[671-675]. Adipose cell size, independent of BMI, is 
directly related to IR [676-678]. The reason for this 
is related to dynamics between adipose tissue and 
the vascular system

Fat is highly vascularized to ensure not only sufficient 
delivery of oxygen/energy and nutrients but for 
release of fatty acids into the blood. Expansion of 
fat mass is tightly linked to the vascular system [679-
682]. During this process adipocytes release vascular 
endothelial growth factor (VEGF) which triggers new 
blood vessel growth, aka angiogenesis [683, 684]. 
Impairment of angiogenesis plays a key role in the 
development of pathologic forms of obesity [685, 
686]. Both vascular and adipose tissue, moreover, 
are mesodermal in origin and the vasculature serves 
as a source of multipotent progenitor cells that give 
rise to new adipocytes [687, 688]. Reduction of stem 
cell influx into fat deposits explains the differences 
between hyperplastic and hypertrophic fat mass 
expansion.

Studies found that adipose tissue in obese subjects, as 
compared to lean, has markedly decreased capillary 
density, 44% in one study, and VEGF levels (58%), 

resulting in 'capillary drop out' [689]. Consistent 
with this, numerous studies found decreased oxygen 
tension, i.e., hypoxia, in adipose tissue of obese 
people [690-697]. So, in pathologic obesity not only 
is there decreased energy generation in the blood 
but decreased blood flow into fat. This explains 
the origins of mitochondrial dysfunction, IR, and 
inflammation in pathologic obese states [698, 699]. 
It also explains why adipocyte size and not total fat 
mass is the crucial factor in the evolution of MetS 
[700]. Once this chronic energy-deficient state is set 
into motion a host of systemic endocrine, vascular, 
and immune interactions ensue.

In recent years increased attention has been 
focused on the endocrine aspects of adipose tissue 
[701, 702]. Fat releases hormonal substances 
that directly influence the vascular system, blood, 
and CNS. Leptin has a broad range of actions 
including regulation of appetite as well as energy 
expenditure. Leptin resistance is frequent in obesity 
[703-707]. Another hormone, adiponectin, through 
its effects on glucose and fatty acid metabolism, 
has anti-inflammatory properties in addition to 
improving insulin sensitivity [708-712]. While its 
plasma concentration is decreased in people with 
visceral obesity, its levels remain high in individuals 
with metabolically healthy obesity [713]. Clearly 
adiponectin influences energy disposition in the 
blood and cellular levels. Once the effects of these 
two fat-generated hormones become blunted, 
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fat cells increasingly release pro-inflammatory 
mediators [714-722].

It has long been recognized that the vascular 
endothelium secretes substances that regulate 
fat metabolism but adipose tissue also directly 
influences blood vessels [723-730]. Most blood 
vessels are surrounded by 'perivascular adipose 
tissue' (PVAT), composed of both WAT and BAT, which 
secretes biologically active substances that regulate 
blood flow. In healthy states PVAT releases so-
called 'relaxant' substances, including adiponectin, 
that enhance vascular dilation. In pathologic 
obesity, conversely, PVAT aggravates microvascular 
dysfunction with secretion of constrictor substances 
not dissimilar to the kidneys in hypertension 
through activation of the renin-angiotensin system. 
The end result in either case is to amplify the spiral 
of deterioration.
 
Hypoxia and reduced energy flow into fat cells 
induce mitochondrial dysfunction, oxidative stress, 
and inflammation with subsequent release of pro-
inflammatory cytokines like TNF-α, IL-1β, IL-6 and IL-
18 [731-736]. Cellular distress signals, in turn, elicit 
migration of polarized macrophages into affected 
tissues which themselves exhibit mitochondrial 
dysfunction [737-744]. This results in worsening 
of the energy deficit with activation of the NLRP3 
inflammation and cell death [745-748]. Necrotic fat 
cell death is up to 30-fold higher in obese versus 
non-obese individuals [749-751].

No pharmacologic agents meaningfully impact the 
development and evolution of MetS. Some like 
SGLT2 inhibitors reduce blood sugar levels, induce 
weight loss, and improve insulin sensitivity, but 
do not address the fundamental energy equation. 
Barring unforeseen and highly improbable 
therapeutic developments the only viable approach 
remains far-reaching lifestyle alterations.  

Many studies document improvement in all 
parameters of MetS – microvascular dysfunction, 
mitochondrial impairment, insulin resistance, 
and inflammation – with dietary modification and 
weight loss [752-758] as well as exercise [759-768]. 
Short of such interventions the long-term prospect 
of curbing the global proliferation of MetS is bleak: 
multiple studies confirm direct transmission of the 
blood-borne energy defect from mother to offspring 
[769-777].

THERMOGENESIS & BAT 

Understanding energy metabolism is one of the 
great challenges medical sciences has faced. One of 
the most perplexing issues concerns thermogenesis. 
Scientists have identified a handful of processes 
that contribute to the generation of body heat [778-
780]. The first, basal metabolic rate (BMR), is said to 
account for about 60-70% of heat production. BMR, 
measured in caloric equivalents, is the amount of 
energy needed for organs and tissues to function. 
Another source, diet, accounts for about 5-15% of 
heat release; physical activity, primarily the work 
of muscles, amounts to 20-30%. Yet another, so-
called adaptive thermogenesis, the generation and 
release of thermal energy, is said to produce about 
10-15% of body heat. But such rote metrics obscure 
a towering edifice of confusion as to the exact role 
of heat in the energy economy of the body.

Scientists originally believed that heat was released 
by exothermic chemical reactions in the body. But 
when they compared predicted values to what was 
actually generated the numbers didn't quite add 
up: the heat produced virtually always exceeded 
predictions. Thermogenesis signals that the body is 
increasing energy production. It occurs throughout 
the day as pulses of heat related to physical activity. 
It also happens when individuals are exposed to 
the cold in order to offset heat lost to the outer 
environment [781]. Thermogenesis occurs during 
intense emotional states: the blushing of the cheeks 
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and feelings of warmth during states of shame or 
anger are prime examples [782].

In the early 20th century scientists discovered 
increased heat release following meals [783-787]. 
Such 'diet-induced thermogenesis', during which 
the metabolic rate often increased by 10-20%, was 
originally thought to occur as a result of digestion 
and assimilation of nutrients; but once again 
when scientists calculated the caloric equivalents 
consumed the actual amount of heat produced was 
greater than expected, often by as much as 40-50%.   

Thermogenesis varies widely even among healthy 
individuals. Some remain lean while consuming 
large amounts of food while others stay thin only by 
restricting caloric intake. Various studies found that 
when the two groups consume identical meals the 
high energy intake group has significantly increased 
thermogenesis, often twofold more, than the other 
[788-791]. Early 20th century scientists advanced the 
notion of 'luxuskonsumption', that the body adapts 
to overfeeding by activating energetically wasteful 
mechanisms to dispose of excess energy as heat 
[792, 793]. But this doesn't make sense. Rather 
than dissipating excess nutritional intake as heat 
the opposite seems to be the case: thermogenesis 
is necessary for processing of food materials.

The relation between obesity and thermogenesis is 
a case in point. During exercise, following a meal, 
or upon exposure to cold, obese individuals have 
diminished capacity to generate body heat, a so-
called 'thermogenic defect', which is present at 
the onset of obesity and worsens as it progresses 
[794-814]. During cold exposure body temperature 
actually decreases in some obese people [815-817]. 
Impaired thermogenesis also explains why many 
who lose weight subsequently regain it. After diet 
and weight loss the thermogenic defect persists 
and, in some, actually worsens [818-823]. In many 
diabetics’ thermogenesis disappears altogether 
[824-826]. Impaired thermogenesis would thus 

appear to be a cause rather than an effect of obesity. 
And as with MetS it appears to pass generationally 
from parent to offspring [827, 828]. 

Impaired thermogenesis is directly linked to IR and 
mitochondrial dysfunction [829-835]. In studies 
designed to measure the degree of glucose-induced 
thermogenesis, heat production deteriorated 
progressively in obese individuals as IR increased, 
with lowest levels in those with non-insulin-
dependent diabetes [836-838]. In another study 
the thermic effect of food was blunted in obese 
versus lean individuals and, in each of these groups, 
lower in more insulin-resistant subjects [839]. 
Not surprisingly thermogenesis remains intact 
in metabolically healthy obesity [840]. Blunted 
thermogenesis has been reported in both NAFLD 
and PCOS [841-846]. We are thus drawn to conclude 
that defective thermogenesis is an integral aspect 
of MetS with the degree of impairment bearing 
inverse relation to microvascular dysfunction and 
systemic inflammation.

For decades it had been recognized that BAT played 
a key role in thermogenesis in hibernating animals 
and human infants but it was widely believed that 
BAT was absent in adult humans [847-852]. A 2007 
study using PET imaging in adults found enhanced 
metabolic activity in fat depots confirming the 
presence of BAT [853]. Representing 1-2% of total 
body fat, it is found in the neck, axillary, mediastinal 
and paravertebral regions. BAT, a significant source 
of adaptive thermogenesis in humans, is also 
present in perivascular adipose tissue and invests 
large central arteries like the aorta.

The most potent stimulus for BAT thermogenesis is 
cold exposure. BAT likely evolved for this purpose. 
It was initially believed that shivering was the 
main source of body heat during cold exposure 
but studies found that thermogenesis occurred 
before shivering and so the term 'non-shivering 
thermogenesis' came into use [854]. While WAT 
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metabolic activity is induced mainly by blood-borne 
mediators, BAT thermogenesis, as noted earlier, is 
activated by the sympathetic nervous system [855-
860]. Heat pulses, released into the extracellular fluid 
space, quickly appear in the vascular compartment 
producing alterations in the blood that mediate 
systemic effects.

Studies document that BAT thermogenesis 
is associated with a host of desirable effects 
including lowering of blood glucose and triglyceride 
levels, improved insulin sensitivity, reduction of 
inflammatory markers, modest weight loss and 
improvement in hepatic steatosis [861-879]. 
Studies found that higher BAT mass in individuals is 
associated with cardiometabolic health [880-883]. 
Other studies suggest that as obesity increases 
BAT mass and function inversely decline [884-887]. 
Along this line reports suggest that maternal high-

fat diets and intrauterine exposure to hyperglycemia 
impair BAT formation in the fetus [888,889].

Densely vascularized and laden with mitochondria 
(which impart its brown color) BAT cells contain 
numerous small lipid droplets (versus the large 
unilocular fat globule found in WAT) which predisposes 
to rapid mobilization of fat stores and energy 
generation [890-898] (Figure 7). Studies indicate 
that BAT activity influences triglyceride clearance 
from the blood [899]. Pharmacological blockade of 
lipolysis in BAT cells impairs thermogenesis [900]. 
Thermogenesis takes place along the inner lining 
of the mitochondrial membrane with heat pulses 
generated by so-called 'uncoupling proteins' (UCPs) 
which, researchers claim, diverts energy intended 
for ATP production into heat release, ergo the term 
'uncoupling' [901-909].  

Figure 7. Histology sections of BAT (left) and WAT (right).  Small multilocular fat droplets in BAT versus 
larger unilocular fat in WAT along with greater vascularization favor rapid mobilization of fat stores for 

thermogenesis. https://www.medscape.com/viewarticle/969659 
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Studies find that even modest cold exposure 
(17°C/62°F) not only improves hyperglycemia 
and hyperlipidemia but induces changes in gene 
expression, BAT mass expansion and enhanced 
nonshivering thermogenesis [910-916]. One study 
reported that 4 weeks of daily cold exposure 
increased BAT volume by 45% and mitochondrial 
oxidative metabolism by over 180% [917]. PET 
studies indicate such improvements occur in 
conjunction with increased blood flow into BAT. 
This has led many researchers to suggest that BAT 
thermogenesis be employed to combat the obesity 
epidemic [918-925]. But closer inspection of 
evidence should temper such enthusiasm.

In an insightful December 2023 piece Carpentier 
and Blondin dispel the myth that BAT thermogenesis 
is sufficient to impact MetS outcomes. Based on 
its small volume the contribution of BAT to total 
body energy balance borders on negligible [926]. 
Likewise, BAT contributes less than 1% to clearance 
of glucose and fatty acids from the blood [927, 928]. 
In fact, BAT thermogenesis, on a per unit basis, is not 
impaired in obese versus lean subjects. Defective 
thermogenesis in obesity is related not to impaired 
lipid metabolism but to decreased total BAT mass 
[929, 930].  

On this basis one must conclude that thermogenesis 
and IR are intertwined but distinct processes. 
Studies indicate that glucose uptake by BAT cells 
does not correlate with thermogenesis [931, 932]. 
Cold exposure and insulin assert their effects quite 
differently: Cold induces body-wide alterations in 
blood flow and sympathetic nerve activity; Insulin 
acts at the cell membrane [933, 934]. As IR progresses 
(and the passage of glucose into cells diminishes) 
the lipid content of BAT actually increases [935-
937]. If BAT thermogenesis alone could improve 
MetS outcomes it would be equivalent to an over-
unity energy generation device in which output 
is continually greater than input. Once again this 
points to the primacy of microvascular dysfunction 

and deficient blood energy generation in the origin 
and progression of obesity and MetS.  

Even more problematic is that BAT is not the only 
tissue capable of inducing thermogenesis: PET 
studies indicate that the majority of fatty acids and 
glucose are taken up by muscle tissue which also 
contains uncoupling proteins and is the main source 
of body heat [938-951]. Such functional similarities 
are hardly coincidental given that fat and muscle 
share common mesodermal origins [952-955]. It 
would thus appear that BAT thermogenesis is but a 
subset in a wider nexus of thermogenic functions. To 
appreciate this we return to the heart and vascular 
system.  

THYROID-HEART AXIS

In ancient biology the heart was conceived as a vital 
hearth and source of body heat. Aristotle claimed 
that 'innate heat' originated in the motions of the 
heart and gave rise to all bodily functions. Five 
hundred years later Galen agreed [956]. But thyroid 
function was shrouded in mystery.  

Galen claimed the thyroid mediated interactions 
between the brain and heart but argued against any 
secretory function. The role of the thyroid and its 
relation to the heart began to emerge in the 1830s 
with Graves' descriptions of the hyperthyroid state 
and, later, isolation of thyroid hormone (TH) in the 
early 20th century [957]. The thyroid is now regarded 
as the master regulator of the metabolism with 
its effects mediated by the release of body heat. 
Yet after two centuries of focused investigation 
scientists remain uncertain as to how it all comes 
about.

Galen's claim that the thyroid serves as an 
intermediary between the heart and brain is not far 
off the mark: Innervated by sympathetic nerves, the 
synthesis and release of TH is induced by thyroid 
stimulating hormone (TSH) secreted by the pituitary 
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gland. Based on relative quantities of TH in the blood 
and/or sensitivity of tissues to its effects, two nearly 
polar opposite metabolic states in the body ensue.

Once in the blood TH accelerates heart rate (HR). The 
motions of the heart, both contraction and dilation, 
quicken and become more powerful [958-963]. With 
more forceful dilation increased fluid is drawn into 
the veins from the extracellular fluid (ECF) space 
thereby expanding blood volume. Thermogenesis 
increases body temperature sometimes mimicking 
a low-grade fever. Hyperthyroidism was regarded 
by early physicians as a cardiac disorder. With 
chronically elevated TH levels individuals become 
hypermetabolic and may appear emaciated despite 
high caloric intake.  

Hypothyroidism, as disparate from hyperthyroidism 
as winter from summer, is characterized by blunted 
thermogenesis, decreased body temperature and 
torpid metabolism [964, 965]. Symptoms include 
fatigue, drowsiness and cold sensitivity.  Depression 
is not uncommon [966, 967]. Weight gain is frequent 
[968]. Loss of body heat and reduced metabolism 
have striking effects: coarse puffy features secondary 
to increased fluid in the ECF space; dry, scaly skin; 
hair loss; hoarse voice and sleep apnea due to 
thickening and swelling of the tongue; slowness of 
thought and memory functions.

The most striking changes involve the cardiovascular 
system [969-973]. Diminished HR, weakened systolic 
contraction, and restricted diastolic expansion. 
Ejection fraction may decrease by up to half. Loss 
of diastolic suction leads to retention of fluid in the 
ECF space with loss of intravascular volume which, 
in turn, leads to paradoxical hypertension due to 
constriction of peripheral arterioles. Individuals are 
more prone to heart failure.  

But a puzzling discrepancy arises: Manifestations 
of hyperthyroidism like increased HR, tremor and 
anxiety mimic states of heightened sympathetic 

activity while those of hypothyroidism, lowered 
HR, somnolence and lethargy, suggest diminished 
sympathetic tone but, in fact, sympathetic activity 
is  elevated in both states [974-979]. The contrasting 
clinical features must, in large part, be ascribed to 
alterations in body heat. But a more vexing question, 
which we address shortly, concerns the sympathetic 
nerves: What is their actual function in all of this?

The relation between thyroid dysfunction and 
the various expressions of MetS is seen vividly in 
subclinical hypothyroidism in which subjects have 
normal TH values but elevated TSH levels related 
to primary thyroid malfunction. Said to affect 
about 5% of people, it can be seen with iodine 
deficiency or in autoimmune disorders [980-982]. 
Subclinical hypothyroidism has been linked to all 
the various aspects of MetS: IR, higher BMI, waist 
circumference, elevated BP, hyperglycemia and 
hyperlipidemia, inflammation, NAFLD and PCOS 
[983-1002]. The incidence of MetS approaches 
40-50% in people with elevated TSH levels [1003]. 
Thermogenesis normalizes when hypothyroidism is 
corrected [1004, 1005].

Subclinical hypothyroidism, a hypercoagulable state, 
is associated with a rash of adverse cardiovascular 
events such as heart attack, heart failure, atrial 
fibrillation as well as acute renal injury and stroke 
[1006-1027]. And once hospitalized for such 
maladies both 30-day and long-term outcomes are 
significantly worse than in those with normal thyroid 
profiles. On this basis impaired thyroid function 
must be regarded as yet another core component of 
MetS. So how does TH play into the body's energy 
economy?

The geneticist's retort would be that TH induces 
transcription of uncoupling proteins thereby 
enhancing thermogenesis but this ignores a vital 
priming step: TH stimulates heat release by the heart 
into the blood thus altering its energy state. Cardiac 
muscle is laden with mitochondria and uncoupling 
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proteins [1028-1032]. Thermogenesis induces 
endothelial-dependent vasodilation [1033-1038] 
which enhances blood flow into tissues stimulating 
angiogenesis [1039-1043] as well as formation of 
new mitochondria [1044-1049]. An example is the 
'browning' of WAT into so-called beige fat which, 
under the aegis of TH, becomes more vascularized 
and mitochondria-rich thereby altering its color and 
function [1050-1054]. Such cellular developments 
must be regarded as having dependent origination 
on the thyroid-heart axis and blood flow.  

The centrality of this thermogenic nexus is apparent 
in neonatal hypothyroidism: Infants present with 
somnolence, diminished spontaneous movement, 
protracted jaundice, feeding difficulties, and 
delayed developmental milestones [1055-1057]. 
The face may appear edematous, tongue swollen 
and enlarged; impaired growth of skull bones leads 
to enlarged fontanels; reduced muscle development 
results in generalized hypotonia; there is an 
abundance of white fat [1058]. Studies indicate 
that fetal TH deficiency is associated with impaired 
thermogenesis along with decreased mitochondrial 
density in the CNS, muscle, liver, skeletal, and 
adipose tissues thus constituting a hypometabolic 
state [1059-1064].  

Subclinical hypothyroidism in women during 
pregnancy is associated with adverse maternal 
and fetal outcomes [1065-1069]. Affected children 
are more prone to neurologic and endocrine 
abnormalities as well as obesity [1070-1073]. The 
inescapable conclusion is that TH and thermogenesis 
are essential for growth, development and 
maintenance of the metabolic field.  

And while diet-induced weight loss in obesity neither 
reverses the thermogenic defect nor promotes 
browning of WAT [1074], regular exercise improves 
diastolic dysfunction [1075-1079]; enhances insulin 
sensitivity [1080-1085]; reduces inflammatory 
markers [1086-1091]; induces browning of WAT 

along with formation of mitochondria and synthesis 
of uncoupling proteins [1092-1102]; improves 
thermogenesis [1103-1111]; and, in conjunction 
with a balanced dietary regimen,  induces weight 
loss [1112-1119]. The evidence is overwhelming 
and unambiguous: MetS and all its permutations 
are downstream manifestations of impaired energy 
generation and availability in the cardiovascular 
system and blood. The most consistent and reliable 
pathway to alter these pathologic dynamics is 
through the heart.   

AFFAIRS OF THE HEART

The final issue with which we must grapple concerns 
experimental science and hinges on a single 
question: Given the sheer volume and compelling 
nature of the evidence, why didn't scientists 
recognize the obvious sooner? The question looms 
large once it is realized that the central role of the 
heart in the body's energy economy had been widely 
accepted among physicians for over 1500 years. 
Certainly, there was more than enough evidence in 
the medical literature to reach the same conclusion. 
So, what happened?   

This lapse exposes a monumental flaw in scientific 
methodology that can only be ascribed to what 
science historian Thomas Kuhn called paradigm-
induced blindness. A fundamental misinterpretation 
regarding the nature of cardiac function, introduced 
early in the 20th century, led to a series of conceptual 
errors that persist to this day and assured that 
subsequent discoveries pertaining to heart function 
would be misappropriated. It is worth briefly 
examining the trail of error:

Once the heart became conceived as a mechanical 
pump which propelled blood forward through 
the arteries on the basis of systolic contraction, 
and diastole became relegated to passive status, 
all subsequent events relating to heart function 
became subject to what could be called 'observer 
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bias,' which is to say that while experimental facts 
were accurately recognized their significance was 

Figure 8. 3D reconstructed CT image of the heart a great vessels. Spleen (red) and kidneys 
(orange) take origin from the abdominal aorta.

The most glaring deficiency that ensued was 
the inability of scientists to explain how venous 
blood returned to the right side of the heart. The 
recognition by scientists in the early 1980s of a 
suctional force in the ventricles in early diastole 
settled the matter in short order [1120-1123]. Within 
years imaging studies reported spiral flow currents 
in arteries which can only arise on the basis of such 
a force [1124-1136]. Suction, in turn, is generated 
by an expansile force originating in the ventricular 
wall secondary to generation of a magnetic field. 
  

An equally serious error involved the cardiac 
nerves: scientists claimed that they induced systolic 
contraction of the heart even though systole and 
diastole occur in the absence of nerves, what is 
known as cardiac automaticity. During cardiac 
transplantation, for example, surgeons sever the 
nerves from donor hearts and yet hearts continue 
to function in recipients. If nerves don't induce 
ventricular contraction what exactly is their 
function? This relates back to our earlier question 
regarding the sympathetic nerves.

interpreted in light of this skewed notion of cardiac 
function (Figure 8).
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Concerning the origins of the magnetic field one need 
only examine the process of magnetic induction: 
An applied electrical current induces synchronous 
nuclear precession in iron atoms inducing a magnetic 
field which is repelled by intra-nuclear forces into 
the surrounding space. On the same basis flow of 
electrical currents through cardiac nerves during 
systole saturate the field thereby inducing nuclear 
precession in muscle iron stores and a 3D magnetic 
field that promotes active dilation of the ventricle. 
Diastole may be conceived as mutual repulsion of 
muscle fibers and, on the same basis, the cardiac 
cycle itself as alternating phases of attraction and 
repulsion.   

Large heat pulses emitted by the heart were 
recognized early on by 20th century researchers but, 
once again, erroneously interpreted [1137]. Since it 
was assumed that the only purpose of heart muscle 
was contraction, heat release during diastole 
was regarded as energetically wasteful and due 
to inefficiencies in the conversion of glucose and 
fatty acids into useful work. On this basis scientists 
estimated the efficiency of the heart to be no more 
than 20-30% [1138-1141]. Yet even resting skeletal 
muscles release low quantities of heat, aka 'resting 
heat', which has been largely ignored by scientists 
[1142, 1143]. Mesodermal tissue, muscle and fat in 
particular, functions as part of an organized body-
wide energy generating nexus we refer to as the 
metabolic field.

The discovery of uncoupling proteins led scientists 
down yet another rabbit hole. To explain the 
'inefficiency' phenomenon, i.e., thermogenesis, 
scientists invoked the 'chemiosmotic hypothesis', 
advanced by Peter Mitchell in 1967, which held that 
phenomena like heat and voltage potentials are 
related to proton and ion fluxes across membranes 
based on gradient mechanisms [1144, 1145]. 
Mitchell was awarded the 1978 Nobel Prize for his 
grand theory. Unfortunately, within a few years 
it was shown to be wrong. Nonetheless scientists 

continue to pay homage to this golden calf purely 
due to the inertia of collective belief [1146-1151]. 
How does this relate to our concerns?

Mitchell's hypothesis assumed that protons and 
other ions exist inside cells in a free state but Gilbert 
Ling showed that all intracellular water and charged 
species exist in bound colloidal form [1152-1157]. 
There is no soupy broth inside cells; instead, they are 
gel-like in consistency. All intracellular proteins are 
surrounded by such colloidal water, known as the 
'hydration layer', which is essential to their function 
[1158-1164]. It is axiomatic that all bodily functions 
– movement, secretion, nerve transmission, cellular 
replication – are effected by conformational changes 
in proteins (as in the contraction and dilation of 
the heart). As researcher Gerald Pollack asserts, 
proteins are 'the engines of life' [1165].  

Ling's 'association-induction hypothesis' holds that 
cellular functions occur not via trans-membrane flux 
of charged species but on the basis of adsorption 
along the outer surface thereby inducing allosteric 
conformational changes in proteins. Other work 
supports Ling's hypothesis [1166-1172]. Bound cell 
water, in turn, freely communicates with energy-
laden ECF water via ion and water channels at 
the cell membrane [1173-1177]. The inescapable 
conclusion is that current flow through sympathetic 
nerves into the ECF space stimulates thermogenesis 
via induced conformational changes in uncoupling 
proteins.  
 
In recent years scientists have increasingly raised 
questions as to the source of BMR, now called 
‘non-exercise activity thermogenesis (NEAT)’ [1178-
1182]. If it doesn't originate from physical activity 
or cold-exposure, from where does it arise? Given 
that nerves themselves derive current flow from 
the ECF space it is not a giant conceptual leap back 
to recognition of the primacy of heart in the body's 
energy economy. One need only recall that once 
cardiac function ceases all bodily functions come to 
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an immediate halt. This substantiates claims made 
by Aristotle and Galen concerning the centrality 
of the heart. What are the implications of this for 
MetS?

Had scientists recognized such relationships in a 
timely manner would they still be treating broad 
swaths of the population with lipid-lowering 
agents like statins knowing that hyperlipidemia is 
a direct consequence of impaired thermogenesis 
and reversible by diet and exercise? Would they 
continue to treat hypertension with β-blockers that 
blunt thermogenesis [1183, 1184], worsen IR [1185-
1190], raise blood lipid levels [1191], and promote 
weight gain [1192-1194]? Would they continue 
to treat cardiac dysrhythmias with agents like 
amiodarone which impair thyroid function [1195-
1197]? Or would they continue to freely dispense 
corticosteroids for a variety of chronic inflammatory 
conditions knowing that excessive blood cortisol 
levels are a defining feature of MetS [1198, 1199]? 
And while one cannot diminish the impact of 
insulin its supplementation does nothing to prevent 

MetS progression. Why weren't scientists looking 
elsewhere for answers?

The misinterpretation of heart function by 20th 
century medical science constitutes the most 
consequential and avoidable error in the history 
of medicine and one which forever seals its very 
dubious legacy. Nor did it help matters that scientists 
were unable to reach consensus on almost anything 
for over three decades. As the global footprint of 
MetS continues to expand one gets a distinct sense 
that scientists have exhausted their intellectual 
resources and have little more of import to say on 
the subject.     

The wake-up alarm has sounded. A new day has 
dawned. As if global climate change weren't 
enough, a full-scale and progressive deterioration 
of human health is rapidly evolving, one which, 
like its environmental counterpart, will decisively 
impact humans for generations to come. There is no 
turning back. How will collective humanity confront 
this looming disaster?
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